
CONVERGENCE OF
MICRO SERVICES
AND API

www.brillio.com

Let's start
something

CONTENTS

Introduction 3

Application Programming Interface 4

Growth of APIs 4

Types of API 4

Architectures of API Platform 5

API platform using SOA Architecture 5

Limitations of SOA 5

API platform using Microservices Architecture 6

Why Microservices? 6

Architectural Change 8

Cultural Change 9

SDK Development 9

Challenges in adopting Micro services based 11

SDK

Conclusion 12

Introduction 3

Application Programming Interface 4

Growth of APIs 4

Types of API 4

Architectures of API Platform 5

API platform using SOA Architecture 5

Limitations of SOA 5

API platform using Microservices Architecture 6

Why Microservices? 6

Architectural Change 8

Cultural Change 9

SDK Development 9

Challenges in adopting Micro services based 11

SDK

Conclusion 12

The trends for an enterprise and/or consumer to be
relevant digitally and the adoption of cloud-first &
mobile-first approach has pushed product vendors and
solution frameworks, to evolve from a closed and vendor
only implementation business to a more vibrant and
extensible framework. This enables the consumers to
leverage functionality as-is and additionally extend on
the core functions to address current or evolving
business needs.

The rapid pace at which the technology is increasing
has raised the level of customer expectations as well as
the challenges faced by the business. This has forced
the businesses to provide services on which the custom-
ers can build on. Let’s look on some significant challeng-
es that are faced by the organizations who are trying to
stay ahead in the competition.

First of all, the technology advancement has enabled
this world with lot of devices such as – smarter phones,
smart watches, beacons and the list is expected to
increase sooner. Everyone including the business
partners, consumers and employees anticipate round the
clock access to the business information, processes and
notifications. To increase the customer experience and
engagement, the organizations should keep the
customers connected through the all the latest devices
available in the market.

Secondly, to stay in the competition, the organizations
have to innovate constantly and adapt to the newer
trends. They need to be as flexible as possible to quicken
their development process which will reduce their
time-to-market significantly. With the liberal access to
advanced technologies, it will not take longer for a
competitor to launch similarinnovation sooner in the
market and gain the first-mover advantage.

Finally, staying on legacy ways may not be of much help
for the organizations to scale up in terms of both
technology and size. This means that the organizations
have to look for newer ways of revenue generation. In
such competitive environment it is harder, though not
impossible, for most of the organizations to grow in
silos. This mandates the need for collaborating with
other organizations or third parties to “co-create” their
futures.

INTRODUCTION

GROWTH OF APIS
APIs have been in use for years as a basic tool for
effective development. They have aided in increasing the
reusability of features for the developers and in effective
customization for the organizations. It was in early
2000’s when APIs moved to cloud which allowed
so�ware to interact with any service and platform
through network. APIs are growing exponentially per
year.

The following graph shows the growth of public
registered APIs every year:

TYPES OF API
The two major types of APIs that are in market are: REST
and SOAP

Representational State Transfer (REST) APIs involve
simple way of sending and receiving data between
the client and server. It doesn’t have many standards
defined. It is a light-weight API and the data can be
sent through it in JSON or XML or even plain text. This
is the most used API type.

Simple Object Access Protocol (SOAP) is a method of
transferring messages or small information over the
internet. SOAP messages are formatted in XML and
sent through HTTP protocol.

The other types of APIs are JavaScript and XML-RPC
(remote Procedure Call)

The APIs are interface that provides developers the access
to an organization’s proprietary so�ware. It’s a so�ware
intermediary that makes it possible for the application
programs to interact with each other and share data. API
development and deployment requires extensive domain
knowledge in operating an enterprise-class infrastructure.
APIs can be treated as the core product for digital business.
They define the business capabilities, data and processes of
an organization. APIs expose an organization’s valuable
services to the customers and business partners.

APPLICATION
/ CLIENT

API
REQUESTS

DATA
SOURCE

API
RESPONSE

16000

14000

12000

10000

8000

6000

4000

2000
0

2011 2012 2013 2014 2016

Figure 2 Source: Smartbear.com [Infographics]

PUBLIC APLSREGISTERD

Figure 1 Working Of Api

APPLICATION
PROGRAMMING
INTERFACE

ARCHITECTURES
OF API PLATFORM

The SOA-API convergence was once regarded as the best
practice approach for the solution and platform
development. The proponents of SOA pitched about its lo�
benefits both in business and technical perspectives. Though
the benefits are real, getting those benefits is the tougher
task.

SOA is based on the concept of services. Many major
organizations moved from monolithic architecture to SOA
for reducing the complexity in applications development and
scaling. In SOA, each service may perform one or more
activities or may be a combination of one or more service
operations depending upon the implementation. This
essentially means that, each service is built as a separate
piece of code which makes it easier for the developers to
reuse the code.

Some organizations which migrated to SOA from monolithic
architecture started to realise that they were in a mess once
again. This is evident from the real life examples of the
companies like GILT.com, PayPal.

GILT.com migrated from monoliths to a more loosely coupled
architecture that was similar to SOA. They created services
that are aligned to its business lines. But again they realised
that each service created was itself is equal to monoliths. Any
new features/services they added went into the existing
services created. Adding new services was also a challenge.

API PLATFORM USING SOA
ARCHITECTURE

LIMITATIONS OF SOA

PayPal too, encountered a similar problem. They had a
tightly coupled SOA architecture with project specific
APIs which made their integration process painful and
expensive. Additionally, the increasing number of APIs
has made the API discovery process painful.

The common problem observed from the similar cases
are listed out below

There is no clear definition of how small or big the
service should be. This resulted in design flaws and each
service created was itself equal to monoliths. This
defied the whole purpose of adapting SOA over
monolithic architecture.

While scaling up or making changes, the change in one
service affected other dependant services and again all
the teams have to sit together to solve the classic
“integration” problem.

Besides all these, the flexibility quotient was missing.
The dependency on technology was a bottleneck for all
these organizations. For example in case of GILT, they
used ruby on rails in monoliths, JAVA in the SOAs and
had problems in scaling up. They were stuck to a
technology stack and could not leverage the
advantages of other available technologies.

API PLATFORM USING
MICROSERVICES
ARCHITECTURE

Microservices - SOA done right is the new norm. A lot of
companies such as Google, Amazon, Netflix, PayPal who had
Monolithic/tightly coupled SOA have moved to the micro
services based approach resulting in faster development
time, faster iteration and less downtime - this has added up
to the revenue of these companies.

Key attributes any modern API platform should address is
depicted in the diagram below,

WHY MICROSERVICES?
With the changing need of business demands and the
change in the way developers and architects build the
application, a more loosely coupled architecture
approach would help them to quickly build and deploy
applications. In the Top 10 Strategic Technology Trends
for 2016, Gartner states

“Monolithic, linear application designs (e.g., the three-tier
architecture) are giving way to a more loosely coupled
integrative approach: the apps and services architecture.
Enabled by so�ware-defined application services, this new
approach enables Web-scale performance, flexibility and
agility.”

This means that changing business needs have to be
dynamically addressed by the developers.

Gartner also acknowledges the rapid growth of
Microservices architecture in the digital world by
stating,

API Access Scope

API Design

Architecture

Technology

API Intergration

PLATFORM QUALITIES

Internal / External

Project Speci�c

Monolithic / tightly
coupied SOA

Single Technology
Stack

CURRENT SCENARIO

Expensive & Time
Consuming

Universal

Product

Microservices

Flexible & Standardized

TARGET SCENARIO

Takes Less than X
minutes only

Figure 3: API Platform Qualities

“Microservice architecture is an emerging pattern for building
distributed applications that support agile delivery and scalable
deployment, both on-premises and in the cloud. Containers are
emerging as a critical technology for enabling agile
development and microservice architectures. Bringing mobile
and IoT elements into the app and service architecture creates
a comprehensive model to address back-end cloud scalability
and front-end device mesh experiences. Application teams
must create new modern architectures to deliver agile, flexible
and dynamic cloud-based applications with agile, flexible and
dynamic user experiences that span the digital mesh.”

This prediction can be validated using real life examples of
PayPal, Amazon, Netflix and GILT.com having already shi�ed
from monolithic/SOA to microservice
architecture.Microservices architecturehelped these
organizations make “focused” service components which
were then combinedto form public APIS that reflectedthese
organization’s actual business capabilities.

In the case of PayPal, the shi� to microservices did miracles
for their business. It resulted in a start of another S-curve
for them. Before adapting microservices architecture, they
made project specific APIs using tightly coupled architecture.
They faced lot of complaints regarding their APIs and SDKs.
Now, a�er shi�ing to microservices the APIs are more
aligned to their capabilities. They were able to bring more
number of customers on-board a�er this shi�

Besides these advantages, when PayPal wanted to enter
into new technology such as payment through beacons,
they did that with ease. They used the appropriate
technology stack for separate services and had separate
teams working on it. This did not disturb the setup of
other services and other teams.

As a result of all these changes, their integration
process has become easier and costs less. They also
made the API discovery process easier through their
developer platform.

Classic SOA was focused around creating organization
wide architecture to make sure that the people in
organization could reuse the resources. Microservices,
though seen as another form of SOA, induces agility
into the process.

Microservices architecture enables the architects and
developers to break the application logically into small
services that are narrowly focused. The services
communicate with each other through networks using
inter-process communication mechanism. Now the
application can be updated or scaled up service-wise
and this significantly minimizes the development and
deployment time for the developers

ARCHITECTURAL
CHANGE

Capability
APLs

Experience APIs

Microservices

Microservices

2nd party applications
& partners

3rd party applications

API FacadeInternal Apps

MS-1 MS-2 MS-3 MS-4

ms1 ms2 ms3 ms4 ms6ms5

Figure 3 Microservices and API Setup

Each microservice component has its own database
and a set of teams that owns the component

The microservice component contains few lines of
code with the focus on only one service. This
removes the ambiguity regarding the service size
that was faced with SOA

A set of microservice components forms
Macroservices. The Macroservices forms the
capability APIs which can be used by the
internal application.

The Capability APIs pass through API façade, the
goal of which is to articulate internal systems and
make them useful for the developers. Façade
provides a virtual layer between the interface on the
top and implementation on the bottom.

The exposed APIs can be used by the external
developers for integrating with their application with
the organization capabilities

The following figure shows the skeleton of microservice
architecture:

Conway’s law states that the so�ware interfaces
structure of a system will reflect the social boundaries
of that organization. This basically translates into the
context that the organization that wants to make a shi�
to microservice architecture should organize the staffs
in a DevOps setup rather than managing in silos.

The Microservices architecture emphasizes on one team
owning one service. Each microservice will be treated as
a product where and hence will have its own manager,
developer, tester, DB specialist and other required
resources. These resources are responsible for the
focused service provided by the microservice component
resulting in seamless process of development, testing,
debugging and integration

CULTURAL CHANGE SDK DEVELOPMENT
Apparently, organizations are shi�ing to mobile-first
strategy to improve customer experience and increase
customer engagements with their brand. This can be
supported with a survey result from Nielsen which
shows that 89% of consumers prefer mobile
applications over mobile web. Having a well-built SDK is
crucial if an organization’s strategy includes making its
capability available across the platforms and devices.

A good SDK improves developer experience using which
developers can build great mobile applications. The SDKs
can be created to support various platforms and
programming languages.

Besides, providing SDK has wide range of functions such
as:

API management

Security Management

Starter sample code

Performance monitoring

User Data collection for Analytics

Figure 4: Microservies Ownership

Design & Personalization

Account
Management
Team

Mobile
Management
Team

Personalization
Team

Login / Signup Mobile

The following picture represents the ownership of teams in microservices architecture

Figure 5: SDK Development Setup

By creating SDKs the brand can have control over
which SDKs can be accessed by whom.
In the above picture,

The public APIs shall be combined to form different features
of a platform. They serve as the building block of SDKs.

Now, these features are readily available for the developers,
which saves significant amount of development time in
recreating them.

Each microservice components expose it’s capability through
an API.

The microservices components can combine to form a
Macroservice. This macroservice component can also expose
its capabilities through APIs.

The private APIs will be used by the internal developers for
development of internal applications or web services

The public APIs will be exposed to the external developers.
The Public APIs are formed by various combinations of
private APIs, thus masking the private APIs from the external
visibility

Building Blocks
of SDK

SDK

Feature 2 Feature 3Feature 1

Microservices

Microservices

Private APIs

Public APIs

MS-1

ms1 ms2

ms5 ms6

EN
TE

RP
RI

SE
 B

O
U

N
D

AR
Y

ms3 ms4

ms7 ms8

MS-2

The following are the advantages of building an SDK:

Simplify Integration:
Time is a crucial factor for the integration process.
It is important to do the integration process quickly and
correctly to take the application quicker to the market.
Also the integration is carried out by resources with high
skill sets. So it makes sense to take as less time as
possible for this important step. Having an SDK
simplifies the process integration of APIs that requires
complex use cases

Abstraction and Security:
SDKs can be used to encrypt the underlying UI or APIs to
secure the quality of data

Metrics:
SDKs can be helpful in collecting the API usage pattern
of the user and do the required modification or change
the stage of the API lifecycle as required. For example, if
no users are using a particular API, it is better to retire
the API safely rather than retaining it.

Ensuring Best Practices:
Providing an SDK helps the developer by reducing the
bad code, thereby, avoiding delays in the entire
business. Inefficient code can corrupt the services of the
whole organization. SDK helps avoiding such bad
practices. Also SDK helps ensuring that the right rules
and practices are followed throughout the publisher
network.

Thus, providing SDK makes a developer’s life simpler
and ensures that right practices are followed, keeping
critical systems secure.

ADVANTAGES OF
SDKS

CHALLENGES IN ADOPTING
MICRO SERVICES BASED SDK
Developer mind-set
Developers tend to concentre on decomposing the
services and write fine grained services. The goal is to
decompose the application into compostable
microservices.

Inter-process communication
Managing the complexity of Inter Process
Communication mechanism could be challenging.
Implementing retry logic, addressing latency issues and
partial failures due to the unavailability of services
would be critical.

Shared DB architecture
Segregation of data by consumer and securing the
services is another critical need.

Service rollout
Ensuring consistency of upgrades, rollout of service
updates has to be orchestrated through a well-defined
automated process.

Programming Languages
Ensuring support for a large developer ecosystem
through a variety of programming languages could be
another challenge.

Building a complex API platform is inherently difficult. A
monolithic or a tightly coupled SOA architecture makes
sense only in the case of simple, lightweight platform.

The implementation of microservices based API
platform seems to solve the problems that arise out
of monolithic or tightly coupled SOA

With no technology dependency using microservices,
newer services can be created in lesser time to
support any latest devices launched in the market

There are no more hurdles for innovations. The
time-taken to develop and deploy a minor feature is
less than a day.

Integration is not painful anymore. The organization
can now collaborate with customers more easily to
make the organization’s capabilities reach a bigger
set of audience.

CONCLUSION

Microservices based SDK can be a strategy for the
organizations to align IT assets with business
capabilities, business resources and business processes.
Of course as Fred Brooks said 30 years ago, there are
no silver bullets. But if you are looking for a distributed
system to simplify your API platform and develop SDK
that can help developers creating applications and
integrating them quickly, then microservices based
SDK should fit you.

