
 Managing Data Ingestion
with

AWS Glue
Incremental Keys

01

What is an
Incremental Key

& Why Do I Need One?

The answer to all the conundrums lies in designing a mechanism to highlight the newly inserted/updated records. Hence,
this necessitates the identification of certain attributes in our data that would uniquely highlight the same i.e., the creation
of Incremental Keys.

As data flows from one source to another, incremental data ingestion is one of the most common requirements.

We often hear from our clients:

 “Do we need to overwrite data
every time? If yes, then as data
grows, how would we manage the
huge data volume?” “Would there be a date-diff

mechanism for capturing the
newly inserted records?”

 “How can we just ingest the fresh
/ new records daily?”

 “Our ETL tech-stack (Talend /
Informatica / Glue / Stremasets)
is the most expensive service.
Can you help us minimize data
processing costs?”

An incremental key is a field or a combination of fields that specifies
the update time of a file or a set of rows that signals the recently
modified rows in comparison to others. This field can be used to collect
the updated new data rows, saving vast amounts of time in the collec-
tion process and improving the performance.

Incremental keys are great for swift update times. The following are the
benefits of implementing incremental keys with your data (Database,
Data Lake, or Datawarehouse):

In a pragmatic implementation having a single field often produces
redundant records. Hence, it is advisable to select the incremental key
as a combination of fields. There are multiple use cases for the incre-
mental key implementation across industries:

Shorter update times- Only updates the newly modi-
fied/inserted records.

Optimized data storage cost- Helps reduce redundant
data records.

Seamless data management- Easily store the historical
records, ensuring the traceability of data operations.

02

Use Case II- Seamless Living in Cloud

Specific to the downstream analysis of data (analytical requirement
or transactional requirement), it is not feasible to load the entire
data in the downstream services. Hence, clients are keen on
designing a mechanism to capture the daily updates rather than
an overwrite mechanism.

Sometimes the primary key or even the combination of keys in a
dataset fails to identify the records uniquely. In such cases by
inserting a new attribute such as 'update', the timestamp could be
used to identify the newly modified records.

Use Case I- Data Migration to Cloud

If the client's ecosystem is a hybrid architecture, some data resides
on-premises and the other part on the cloud. In this case,
incremental keys are often used to ingest the newly
inserted/updated records.

Imagine daily inserting the records for certain entities on the cloud,
every time with a complete bulk upload for terabytes of data. This
would not only be a tedious but also an expensive process. There-
fore, doing a bulk upload for the first time and then just inserting
the newly modified records seems more rational. The incremental
keys are used for signaling the changed records.

Use Case III- Performance Optimization

We have seen with multiple clients that a data processing job would take around 5-6 hours to complete, despite the
high compute provided to the ETL service.

In such cases, the only solution left is to improve the data design mechanism by processing the records which were not
processed earlier or skipping the redundant data records.

Specific to data commute within AWS environment for data transfer from Redshift / RDS / any other data store to S3 or
any other downstream consumption service, the following are the common approaches:

• Unload query with a relevant filter condition
• A PostgreSQL script (or the native data store SQL version) with a relevant filter condition
• Glue ETL job, etcetera

For the initial two approaches (i.e., unload query & a customized script) a filter condition is manually placed to capture
the incremental records, but there is no implicit/in-built incremental key.

Whereas, with AWS Glue you can design an automated incremental key logic i.e., AWS Glue Incremental Key. AWS
Glue’s Spark runtime has a mechanism to store the state. This mechanism is used to track data processed by a particu-
lar run of an ETL job. The persisted state information is called job bookmark. The following sections would deep-dive on
the same.

How to Implement
an Incremental Key

Using AWS Glue?

03

With AWS Glue we can design logic to pass multiple fields/attributes
as the incremental key. There is a feature in AWS Glue, referred to as
job bookmarks. The same needs to be enabled to capture the
information for the last processed records with respect to the
specified incremental key. We will understand its implementation by
taking a sample use case.

Use Case: Within an AWS environment, implementing ETL
design from a JDBC store (Redshift / RDS) as the source & S3 as the
target, for incremental data ingestion.

The following is the indicative architecture for the sample use case:

Step A: Incremental load from JDBC store (Redshift) to S3

· Metadata (schema) creation for the input data sources in the Glue
data catalog via Lambda.
· Glue ETL script- This will consist of the logic for enabling the Glue job
bookmark on specific datasets & specifying the incremental key field or
the combination of fields.
· As per the business schedule requirement, a lambda would trigger
the Glue ETL job for data transfer.

Step B: Incremental data processing within S3 zones

· Metadata (schema) creation for the input data sources in the Glue
data catalog via Lambda.
· Glue ETL script- This will consist of the logic for enabling the Glue job
bookmark on specific S3 files and the incremental key would be the
timestamp of file creation in S3.
· As per the business schedule requirement, S3 event notification
would trigger the Glue ETL job for data transfer.

Outcome: This approach will keep a track of already processed
data during a previous run of an ETL job by persisting state informa-
tion from the job run.

GLUE
BOOKMARK

OTHER FILES

CLUSTER I

CLUSTER II

CLUSTER III

CLUSTER IV

A

RAW ZONE TRANSFORM ZONE PUBLISH ZONE

B

GLUE
BOOKMARK

GLUE- Create
Crawler
Start Crawler
Job- Data Profiling

GLUE- Create
Crawler
Start Crawler
Job- Data
Extraction

GLUE- ETL Job
for Data
Quality

CLUSTER I
DATA

CLUSTER II
DATA

CLUSTER III
DATA

CLUSTER IV
DATA

CLUSTER I

S3 Landing
Bucket

S3 Landing
Bucket

S3 Landing
Bucket

S3 Landing
Bucket

CLUSTER II

CLUSTER IV

CLUSTER III

CLUSTER I
DATA

CLUSTER II
DATA

CLUSTER III
DATA

CLUSTER IV
DATA

GLUE
BOOKMARK

04

What Are the Limits
of the AWS Glue
Incremental Key

(the Break-even Point)?

A POC (proof of concept) is done for Glue incremental ingestion from
a JDBC store (Redshift in our case) as the data source. As a part of the
POC, various test case scenarios have been designed to identify the
limits & scope of using Glue bookmark keys for incremental data
ingestion. The following is the outcome of the various test cases:

Thus, a rational selection of fields (compound key) as the incremental
key would be preferred over a single field / primary key. Even after
using a compound key, if the data in scope does not have a single field
that guarantees order, other mechanisms like unloading queries (for
redshift) with a DateTime filter condition must opt for data ingestion.

About Author

Balvinder is an Archvisor (Budding Architect & Advisor) in the Cloud
Transformation & Data Engineering domain. Driven with tech-
no-functional skillset, he is client-centric in his approach and holds
experience of working on three cloud hyperscalers (AWS, Azure &
GCP). He holds around 3.5 + years of experience in data on cloud
consultancy across Financial, Telecom and Healthcare industries.

Test Case Primary Key
(Single Field)

Compound Key
(Combination of

2 Fields)

Result

No.

1 Pass Pass

Pass

Pass

Pass (As for the
second field value
was monotonically

increasing)

Pass

Pass

Fail

Fail Fail

2

3

4

5

The fields in the incremental key are
monotonically increasing.

The fields in the incremental key are
monotonically decreasing.

An update using the incremental key on the
records.

Insertion of values for the gaps or breaking
the monotonically increasing/decreasing

oder.

The fields in the incremental key are
monotonically increasing or decreasing,

but have some gaps between them.

ABOUT BRILLIO

At Brillio, our customers are at the heart of everything we do. We were founded
on the philosophy that to be great at something, you need to be unreasonably
focused. That’s why we are relentless about delivering the technology-enabled
solutions our customers need to thrive in today’s digital economy. Simply put, we
help our customers accelerate what matters to their business by leveraging our
expertise in agile engineering to bring human-centric products to market at warp
speed. Born in the digital age, we embrace the four superpowers of technology,
enabling our customers to not only improve their current performance but to
rethink their business in entirely new ways. Headquartered in Silicon Valley, Brillio
has exceptional employees worldwide and is trusted by hundreds of Fortune 2000
organizations across the globe.

https://www.brillio.com/

CONTACT US: info@brillio.com

infor@brillio.com

